
Java Coding Style Guide
Achut Reddy

Server Management Tools Group

Sun Microsystems, Inc.
Created: January 27, 1998

Last modified: May 30, 2000

ABSTRACT

The importance and benefits of a consistent coding style are well known. This document describes a set of coding
standards and recommendations for programs written in the Java language. It is intended for all Java software de-
velopers. It contains no material proprietary to Sun, and may be freely distributed outside Sun as well.

Feedback in the form of corrections or suggestions for improvement are welcomed. Comments may be sent to
achut@eng.sun.com .

Table of Contents

.1

..1

.1
..2
..2
2
3
3

...4
...4

..5
..5
...5

6

..6

..

.8
..8
..9
..10

.

...11

...11

..11

..11
.12
..12
..12
.12
..12
...13
..13
...
1.0 Introduction ..
1.1 Background...1
1.2 Acknowledgments...

2.0 Source Files...
2.1 Source file naming ..
2.2 Source file organization ..

2.2.1 Copyright/ID block comment ..
2.2.2package declaration...
2.2.3import declarations ...
2.2.4class/interface declarations ...3

3.0 Naming Conventions...3
3.1 Package naming ...
3.2 Class/Interface naming...
3.3 Field naming ...4
3.4 Method naming ...
3.5 Local variable naming...
3.6 Statement label naming..

4.0 White Space Usage..
4.1 Blank lines ..6
4.2 Blank spaces..6

4.2.1 A single blank space (not tab) should be used:..
4.2.2 Blanks shouldnot be used: ..6

4.3 Indentation ..7
4.4 Continuation lines ...7

5.0 Comments...
5.1 Documentation comments ..
5.2 Block comments..
5.3 Single-line comments..

6.0 Classes...10
6.1 Class body organization...

6.1.1 Member access levels ...
6.1.2 Member documentation comments..
6.1.3 Class and instance variable field declarations ...
6.1.4 Static initializer ...
6.1.5 Static member inner class declarations..
6.1.6 Static method declarations ...
6.1.7 Instance initializer...
6.1.8 Constructor declarations ..
6.1.9 Instance method declarations..

6.2 Method declarations..
6.3 Local inner classes ...14
Java Coding Style Guide i Table of Contents

Table of Contents

...14

..15

.15

..16

.16

...1

...16
.16
..16
.17
...17
..17
.17
.18
.18
.18
18
18
.19
9
...1

.

6.4 Anonymous inner classes...
6.5 Anonymous array expressions and array initializers ..

7.0 Interfaces..
7.1 Interface body organization ..

8.0 Statements...
8.1 Simple statements ..6

8.1.1 Assignment and expression statements...
8.1.2 Local variable declarations ...
8.1.3 Array declarations..
8.1.4return statement ..

8.2 Compound statements..
8.2.1 Braces style ..
8.2.2 Allowed exception to braces rule..
8.2.3 if statement ...
8.2.4 for statement ...
8.2.5while statement ..
8.2.6do-while statement ...
8.2.7switch statement ..
8.2.8try statement ..
8.2.9synchronized statement ..1

8.3 Labeled statements...9

References...20

Appendix A - Java Coding Style Example

Appendix B - Java Coding Style Quick Reference Sheet
Java Coding Style Guide ii Table of Contents

nguage
iting

work-

ools

nown

us on
is ap-

es not
exists.

ecify a

ent, the
styles
y the
lines

several

at the

 directly

ce file
of
longer
asses
1.0 Introduction

This document describes a set of standards and guidelines for developing programs in the Java la
(as specified in [3]) with a consistent style. It is meant to be used not only by programmers directly wr
Java code, but also by programmers creating programs which automaticallygenerate Java code.

The importance and benefits of a consistent coding style are well known. A consistent style:

• improves the readability, and therefore, maintainability of code

• facilitates sharing of code among different programmers, especially teams of programmers
ing on the same project.

• allows easier development of automated tools to assist in program development, such as t
which automatically format or pretty-print source code.

• makes it easier to conduct code reviews, another software engineering process with well-k
benefits. In turn, a practice of regular code reviews can help enforce a consistent style.

• saves development time, once the guidelines are learned, by allowing programmers to foc
the semantics of the code, rather than spend time trying to determine what particular format
propriate for a given situation.

However, these standards are not meant to be rigidly enforced without exception. This document do
cover all possible situations. Experience and informed judgement should be used wherever doubt
Consistency of coding style is more important than using a particular style.

These standards are general, not specific to any particular project; project teams may choose to sp
narrower set of additional guidelines for their project, which includes these guidelines as a subset.

This document has been updated to cover all features up to version 1.1 of the Java language.

1.1 Background

The guidelines presented here were not created in a vacuum. In the process of creating this docum
author has scanned literally hundreds of thousands of lines of existing Java code to determine the
being used in current practice. As with most languages, the predominant style is heavily influenced b
style of the original designers and early developers. As a result, for example, the JDK (about 600,000
of Java source) already largely conforms to this style guide.

The author has also used his extensive experience with C and C++ coding style issues gained from
years of programming as well as from authoring several previous style documents (such as [1]).

1.2 Acknowledgments

This document builds upon and borrows heavily from several sources listed in the References section
end of this document, but especially [1], [2], and [3].

The language terminology used here, as well as several suggested naming conventions, are taken
from [3].

2.0 Source Files

On file-based host implementations of Java, the compilation unit is a Java source file. A Java sour
should containonly onepublic class or interface definition, although it may it also contain any number
non-public support classes or interfaces. Source files should be kept to less than 2000 lines. Files
than this become difficult to manage and maintain. Exceeding this limit is a good indication that the cl
or interfaces should probably be broken up into smaller, more manageable units.
Java Coding Style Guide 1 Introduction

(such

file
e file
 sys-

 copy-

em.

.

t ap-

very
epart-

:

For all but the most trivial projects, source files should be kept under a version management system
as SCCS or RCS).

2.1 Source file naming

Java source file names are of the form:

ClassOrInterfaceName. java

WhereClassOrInterfaceNameis exactly the name of the public class or interface defined in the source
(and therefore, follows all the naming conventions for classes; see section 3.2 for more details). Th
name suffix is always.java except on systems that support only three-character extensions; on such
tems, the suffix is.jav .

JAR (Java Archive) file names are of the form:

ArchiveName. jar

or

ArchiveName. zip

2.2 Source file organization

A Java source file should contain the following elements, in the following order:

1. Copyright/ID block comment

2. package declaration

3. import declarations

4. one or more class/interface declarations

At least one blank line should separate all of these elements.

2.2.1 Copyright/ID block comment

Every source file should start with a block comment containing version information and a standard
right notice The version information should be in the following format:

@(#) module version date [firstname lastname]

This can be generated automatically by using the SCCS ID string:

%W% %E%

module is the name of the file.versionis the source file version used by the version management syst
It is not necessarily the same as the class version number (see the@version tag in 5.1).date is the date
of the most recent modification. “firstname lastname” is an optional string identifying the creator of the file

 The copyright notice should contain at least the following line:

 Copyright (c) yearlist CopyrightHolder . All Rights Reserved.

whereyearlist is a year, a year range, or a comma-separated list of years for which the copyrigh
plies. The SCCS keyword string%G%can be used in place of specifying theyearlist explicitly. SCCS
will fill in the year automatically upon check out, thereby eliminating the need to update the year list e
year. Additional legal text may need to be included depending on the situation. Consult your legal d
ment for exact text. Here is the minimal copyright/id block comment for software developed at Sun
Java Coding Style Guide 2 Source Files

e types
should

ically

e pack-
pack-
gram

class-

ra-
r in

 im-

tively
ere

c-
section

r set.

t

/*
 * %W% %E%
 *
 * Copyright (c) %G% Sun Microsystems, Inc. All Rights Reserved.
 */

2.2.2 package declaration

Every source file should contain a package declaration. Omitting the package declaration causes th
to be part of an unnamed package, with implementation-defined semantics. The package statement
start in column 1, and a single space should separate the keywordpackage from the package name. See
section 3.1 for rules on package naming. Example:

package java.lang;

2.2.3 import declarations

Import statements should start in column 1, and a single space should separate the keywordimport from
the type name. Import statements should be grouped together by package name. A single blank linemaybe

used to separate groups of import statements. Within groups, import statements should be sorted lex1.

Wildcard type-import-on-demand declarations (e.g. import java.util.*;) shouldnot be used; use
fully qualified type names instead. There are several reasons for this:

• The most important reason is that someone can later add a new unexpected class file to the sam
age that you are importing. This new class can conflict with a type you are using from another
age, thereby turning a previously correct program into an incorrect one without touching the pro
itself.

• Explicit class imports clearly convey to a reader the exact classes that are being used (and which
es arenot being used).

• Explicit class imports provide better compile performance. While type-import-on-demand decla
tions are convenient for the programmer and save a little bit of time initially, this time is paid fo
increased compile time every time the file is compiled.

The -verbose flag in thejavac compiler can be used to discover which types are actually being
ported, in order to convert type-import-on-demand declarations to fully qualified ones.

2.2.4 class/interface declarations

Following the import sections are one or more class declarations and/or interface declarations, collec
referred to simply astypedeclarations. The number of type declarations per file should be kept small. Th
should be at mostonepublic type declaration per file. The public type, if any, should be thefirst type dec-
laration in the file.

Every public type declaration should be immediately preceded by adocumentationcomment describing its
function and parameters (using the@paramtag). The description should be concise. Non-public type de
larations should also be preceded by a comment, but it need not be a documentation comment. See
5.1 for more information about documentation comments.

3.0 Naming Conventions

The naming conventions specified here apply only to Java code written in the basic ASCII characte
Terms such as “upper-case” are obviously meaningless for some Unicode character sets.

1. A tip for vi users: this can be accomplished easily by positioning the cursor on column 1 of the first import statemen
and typing:!}sort <RETURN>
Java Coding Style Guide 3 Naming Conventions

ples:

ically
main

e, and

n acro-
Class
rface. If
-

ll as
e under-

The

 cases,
3.1 Package naming

Generally, package names should use only lower-case letters and digits, and no underscore. Exam

java.lang
java.awt.image
dinosaur.theropod.velociraptor

The unique package prefix scheme suggested in [3] should be used for packages that will be publ
distributed. In this scheme, a unique prefix is constructed by using the components of the internet do
name of the host site in reverse order. The first component (top-level internet domain) is all upper-cas
the remaining components of the prefix are in lower case. Example:

com.acmedonuts.graphics

3.2 Class/Interface naming

All type names (classes and interfaces) should use theInfixCapsstyle. Start with anupper-caseletter, and
capitalize the first letter of any subsequent word in the name, as well as any letters that are part of a
nym. All other characters in the name are lower-case. Do not use underscores to separate words.
names should be nouns or noun phrases. Interface names depend on the salient purpose of the inte
the purpose is primarily to endow an object with a particularcapability, then the name should be an adjec
tive (ending in-able or -ible if possible) that describes the capability; e.g.,Searchable , Sort-
able , NetworkAccessible . Otherwise use nouns or noun phrases.

Examples:

// GOOD type names:
LayoutManager, AWTException, ArrayIndexOutOfBoundsException

// BAD type names:
ManageLayout // verb phrase
awtException // first letter lower-case
array_index_out_of_bounds_exception // underscores

3.3 Field naming

Names of non-constant fields (reference types, or non-final primitive types) should use theinfixCapsstyle.
Start with alower-caseletter, and capitalize the first letter of any subsequent word in the name, as we
any letters that are part of an acronym. All other characters in the name are lower-case. Do not us
scores to separate words. The names should be nouns or noun phrases. Examples:

boolean resizable;
char recordDelimiter;

Names of fields being used asconstantsshould be all upper-case, with underscores separating words.
following are considered to be constants:

1. All static final primitive types (Remember thatall interface fields are inherentlystatic
final).

2. All static final object reference types that are never followed by"." (dot).

3. All static final arrays that are never followed by"[" (dot).

Examples:

MIN_VALUE, MAX_BUFFER_SIZE, OPTIONS_FILE_NAME

One-character field names should be avoided except for temporary and looping variables. In these
use:

• b for abyte
Java Coding Style Guide 4 Naming Conventions

er
racters
he nam-
con-

th
ent label
xample:

s.
• c for achar

• d for adouble

• e for anException object

• f for afloat

• g for aGraphics object

• i , j , k , m, n for integers

• p, q, r, s for String , StringBuffer, or char[] objects

An exception is where a strong convention for the one-character name exists, such asx and y for screen
coordinates.

Avoid variablel (“el”) because it is hard to distinguish it from1 (“one”) on some printers and displays.

3.4 Method naming

Method names1 should use theinfixCapsstyle. Start with a lower-case letter, and capitalize the first lett
of any subsequent word in the name, as well as any letters that are part of an acronym. All other cha
in the name are lower-case. Do not use underscores to separate words. Note that this is identical to t
ing convention for non-constant fields; however, it should always be easy to distinguish the two from
text. Method names should be imperative verbs or verb phrases. Examples:

// GOOD method names:
showStatus(), drawCircle(), addLayoutComponent()

// BAD method names:
mouseButton() // noun phrase; doesn’t describe function
DrawCircle() // starts with upper-case letter
add_layout_component() // underscores

// The function of this method is unclear. Does it start the
// server running (better: startServer()), or test whether or not
// it is running (better: isServerRunning())?
serverRunning() // verb phrase, but not imperative

A method to get or set some property of the class should be calledgetProperty () or setProperty ()
respectively, whereProperty is the name of the property. Examples:

getHeight(), setHeight()

A method to test some boolean property of the class should be calledisProperty (), whereProperty
is the name of the property. Examples:

isResizable(), isVisible()

3.5 Local variable naming

Local variable follow the same naming rules as field names (see section 3.3).

3.6 Statement label naming

Statement labels can be targets ofbreak or continue statements. They should be all lower-case, wi
words separated by underscores. Even though the language allows it, do not use the same statem
name more than once in the same method. See section 8.3 for the format of a labeled statement. E

1. In Java, constructors are not considered methods; constructors of course always have the same name as the clas
Java Coding Style Guide 5 Naming Conventions

line

).

ot
for (int i = 0; i < n; i++) {
 search: {
 for (int j = 0; j < n/2; j++) {
 if (node[j].name == name)
 break search;
 }
 for (int j = n/2; j < n; j++) {
 if (node[j].name == name)
 break search;
 }
 } // search
}

4.0 White Space Usage

4.1 Blank lines

Blank lines can improve readability by grouping sections of the code that are logically related. A blank
should also be used in the following places:

1. After the copyright block comment, package declaration, and import section.

2. Between class declarations.

3. Between method declarations.

4. Between the last field declaration and the first method declaration in a class (see section 6.1

5. Before a block or single-line comment, unless it is the first line in a block.

4.2 Blank spaces

4.2.1 A single blank space (not tab) should be used:

1. Between a keyword and its opening parenthesis. This applies to the following keywords:catch ,
for , if , switch , synchronized , while . It doesnot apply to the keywordssuper and
this ; these should never be followed by white space.

2. After any keyword that takes an argument. Example:return true;

3. Between two adjacent keywords.

4. Between a keyword or closing parenthesis, and an opening brace “{”.

5. Beforeand after binary operators1 except.(dot). Note thatinstanceof is a binary operator:

if (obj instanceof Button) { // RIGHT

if (obj instanceof(Button)) { // WRONG

6. After a comma in a list.

7. After the semi-colons in afor statement, e.g.:

 for (expr1; expr2; expr3) {

4.2.2 Blanks shouldnot be used:

1. Between a method name and its opening parenthesis.

1. Some judgement is called for in the case of complex expressions, which may be clearer if the “inner” operators are n
surrounded by spaces and the “outer” ones are.
Java Coding Style Guide 6 White Space Usage

; how-

long-
uation
ation

d state-
with

ases,
ment
k line
ept-

nt
2. Before or after a.(dot) operator.

3. Between a unary operator and its operand.

4. Between a cast and the expression being casted.

5. After an opening parenthesis or before a closing parenthesis.

6. After an opening square bracket [or before a closing square bracket].

Examples:

a += c[i + j] + (int)d + foo(bar(i + j), e);
a = (a + b) / (c * d);
if (((x + y) > (z + w)) || (a != (b + 3))) {
 return foo.distance(x, y);
}

Do not use special characters like form-feeds or backspaces.

4.3 Indentation

Line indentation is always 4 spaces1, for all indentation levels.

The construction of the indentation may include tabs as well as spaces in order to reduce the file size
ever, you maynot change the hard tab settings to accomplish this. Hard tabsmust be set every 8 spaces

Note: If this rule was not followed, tabs could not be used because they would lack a well-
defined meaning.

4.4 Continuation lines

Lines should be limited to 80 columns (but not necessarily 80 bytes, for non-ASCII encodings). Lines
er than 80 columns should be broken into one or more continuation lines, as needed. All the contin
lines should be aligned, and indented from the first line of the statement. The amount of the indent
depends on the type of statement.

If the statement must be broken in the middle of a parenthesized expression, such as for compoun
ments, or for the parameter list in a method invocation or declaration, the next line should be aligned
the first character to the right of the first unmatched left parenthesis in the previous line. In all other c
the continuation lines should be indented by a full standard indentation (4 spaces). If the next state
after a continuation line is indented by the same amount as the continuation line, then a single blan
should immediately follow the opening brace to avoid confusing it with the continuation line. It is acc
able to break a long line sooner than absolutely necessary, especially if it improves readability.

Examples:

// RIGHT
foo(long_expression1, long_expression2, long_expression3,
 long_expression4);

// RIGHT
foo(long_expression1,
 long_expression2,
 long_expression3,
 long_expression4);

1. This is a difference from the predominant indentation style of 8 spaces used in C programs; it is an acknowledgme
that typical Java programs tend to have more levels of nesting than typical C programs.
Java Coding Style Guide 7 White Space Usage

hite
name and

re de-
t usage:

ader
cure.

he spe-
ould

es), con-

een.

ingle
ce of

d as text
// RIGHT - blank line follows continuation line because same indent
if (long_logical_test_1 || long_logical_test_2 ||
 long_logical_test_3) {

 statements;
}

A continuation line should never start with a binary operator. Never break a line where normally no w
space appears, such as between a method name and its opening parenthesis, or between an array
its opening square bracket. Never break a line just before an opening brace “{”. Examples:

// WRONG
while (long_expression1 || long_expression2 || long_expression3)
{
}

// RIGHT
while (long_expression1 || long_expression2 ||
 long_expression3) {
}

5.0 Comments

Java supports three kinds of comments: documentation, block, and single-line comments. These a
scribed separately in the subsequent sections below. Here are some general guidelines for commen

• Comments should help a reader understand the purpose of the code. They should guide the re
through the flow of the program, focusing especially on areas which might be confusing or obs

• Avoid comments that are obvious from the code, as in this famously bad comment example:

i = i + 1; // Add one to i

• Remember that misleading comments are worse than no comments at all.

• Avoid putting any information into comments that is likely to become out-of-date.

• Avoid enclosing comments in boxes drawn with asterisks or other fancy typography.

• Temporary comments that are expected to be changed or removed later should be marked with t
cial tag “XXX: ” so that they can easily be found afterwards. Ideally, all temporary comments sh
have been removed by the time a program is ready to be shipped. Example:

// XXX: Change this to call sort() when the bugs in it are fixed
list->mySort();

For further extensive guidance in proper comment usage, see references [11] and [13].

5.1 Documentation comments

Java has support for special comments documenting types (classes and interfaces), fields (variabl
structors, and methods, hereafter referred to collectively asdeclared entities (see section 6.1.2 for guide-
lines on which declared entities should have documentation comments). Thejavadoc program can then
be used to automatically extract these comments and generate formatted HTML pages.

A documentation comment should immediately precede the declared entity, with no blank lines in betw
The first line of the comment should be simply the characters/** with no other text on the line, and should
be aligned with the following declared entity. Subsequent lines consist of an asterisk, followed by a s
space, followed by comment text, and aligned with the first asterisk of the first line. The first senten
the comment text is special, and should be a self-contained summary sentence. A sentence is define
Java Coding Style Guide 8 Comments

scribe

e fol-

de all

:

e

 (see
nest,
up to the first period that is followed by a space, tab, or new-line. Subsequent sentences further de
the declared entity.

The comment text can include embedded HTML tags for better formatting, with the exceptions of th
lowing tags:<H1>, <H2>, <H3>, <H4>, <H5>, <H6>, <HR> .

Following the comment text are the documentation tag lines. A documentation comment should inclu
the tags that are appropriate for the declared entity.

Class and interface comments can use the@version , @author , and@see tags, in that order. If there
are multiple authors, use a separate@author tag for each one. Required tags: none.

Constructor comments can use the@param, @exception , and@seetags, in that order. Required tags
one@param tag for each parameter, and one@exception tag for each exception thrown.

Method comments can use the@param, @return , @exception , and@see tags, in that order. Re-
quired tags: one@paramtag for each parameter, one@return tag if the return type is notvoid , and one
@exception tag for each exception thrown.

Variable comments can use only the@see tag. Required tags: none.

All of the above can also use the@deprecated tag to indicate the item might be removed in a future
release, and to discourage its continued use.

A documentation comment ends with the characters*/ . It is also acceptable to end the comment with th
characters**/ to aid in visual identification of the documentation comment.

This is an example of a documentation comment for a method.:

/**
 * Checks a object for “coolness”. Performs a comprehensive
 * coolness analysis on the object. An object is cool if it
 * inherited coolness from its parent; however, an object can
 * also establish coolness in its own right.
 *
 * @param obj the object to check for coolness
 * @param name the name of the object
 * @return true if the object is cool; false otherwise.
 * @exception OutOfMemoryError If there is not enough memory to
 * determine coolness.
 * @exception SecurityException If the security manager cannot be
 * created
 * @see isUncool
 * @see isHip
 **/
public boolean isCool(Object obj, String name)
 throws OutOfMemoryError, SecurityException {

5.2 Block comments

A regular block comment is a traditional “C-style” comment. It starts with the characters /* and ends
with the characters */ .

A block comment is always used for the copyright/ID comment at the beginning of each source file
section 2.2.1). It is also used to “comment out” several lines of code. Since block comments do not
their use in other parts of the source code would make it difficult to comment out code.Hence, the use of
block comments other than for the copyright/ID comment and commenting out code is strongly dis-
couraged.
Java Coding Style Guide 9 Comments

ion
ke a
e, un-
n the
ment

e
separate
iling

ent.

list

o and
to

hen a
5.3 Single-line comments

A single-line comment consists of the characters// followed by comment text. There is always a single
space between the // and the comment text. A single line comment must be at the same indentat
level as the code that follows it. More than one single-line comment can be grouped together to ma
larger comment. A single-line comment or comment group should always be preceded by a blank lin
less it is the first line in a block. If the comment applies to a group of several following statements, the
comment or comment group should also be followed by a blank line. If it applies only to the next state
(which may be a compound statement), then do not follow it with a blank line. Example:

// Traverse the linked list, searching for a match
for (Node node = head; node.next != null; node = node.next) {

Single-line comments can also be used astrailing comments. Trailing comments are similar to single-lin
comments except they appear on the same line as the code they describe. At least one space should
that last non-white space character in the statement, and the trailing comment. If more than one tra
comment appears in a block of code, they should all be aligned to the same column. Example:

if (!isVisible())
 return; // nothing to do

length++; // reserve space for null terminator

Avoid the assembly language style of commenting every line of executable code with a trailing comm

6.0 Classes

A class declaration looks like the following. Elements in square brackets [] are optional.

[ClassModifiers] class ClassName [Inheritances] {
ClassBody

}

ClassModifiers are any combination of the following keywords, in this order:

public abstract final

Inheritances are any combination of the following phrases, in this order:

extends SuperClass

implements Interfaces

SuperClass is the name of a superclass.Interfaces is the name of an interface, or a comma-separated
of interfaces. If more than one interface is given, then they should be sorted in lexical order.

A class declaration always starts in column 1. All of the above elements of the class declaration up t
including the opening brace “{ ” should appear on a single line (unless it is necessary to break it up in
continuation lines if it exceeds the allowable line length). TheClassBody is indented by the standard in-
dentation of four spaces. The closing brace “} ” appears on its own line in column 1. There shouldnotbe a
semi-colon following the closing brace. If the class declaration has one or more continuation lines, t
single blank line should immediately follow the opening brace.

Example:
Java Coding Style Guide 10 Classes

.

ess
in the

m-

re, then

embers

ve sin-

yword
s are
-

er,
tant
on-
// Long class declaration that requires 2 continuation lines.
// Notice the opening brace is immediately followed by a blank line.
public abstract class VeryLongNameOfTheClassBeingDefined
 extends VeryLongNameOfTheSuperClassBeingExtended
 implements Interface1, Interface2, Interface3, Interface4 {

 static private String buf[256];
}

6.1 Class body organization

The body of a class declaration should be organized in the following order1:

1. Static variable field declarations

2. Instance variable field declarations

3. Static initializer

4. Static member inner class declarations

5. Static method declarations

6. Instance initializer

7. Instance constructor declarations

8. Instance member inner class declarations

9. Instance method declarations

These three elements, fields, constructors, and methods, are collectively referred to as “members”

Within each numbered group above, sort in lexical order.

6.1.1 Member access levels

Note that there arefour access levels for class members in Java:public , protected , default,and

private , in order of decreasing accessibility2. In general, a member should be given the lowest acc
level which is appropriate for the member. For example, a member which is only accessed by classes
same package should be set todefaultaccess. Also, declaring a lower access level will often give the co
piler increased opportunities for optimization. On the other hand, use ofprivate makes it difficult to ex-
tend the class by sub-classing. If there is reason to believe the class might be sub-classed in the futu
members that might be needed by sub-classes should be declaredprotected instead ofprivate .

6.1.2 Member documentation comments

All public members must be preceded by a documentation comment. Protected and default access m
mayhave a documentation comment as well, at the programmer’s discretion. Private fields shouldnothave
a documentation comment. However, all fields that do not have documentation comments should ha
gle-line comments describing them, if their function is not obvious from the name.

6.1.3 Class and instance variable field declarations

Class variable field declarations, if any, come first. Class variables are those fields which have the ke
static in their declarations. Instance variable field declarations, if any, come next. Instance variable
those which donothave the keywordstatic in their declarations. A field declaration looks like the fol
lowing. Elements in square brackets “[] ” are optional.

1. It is tempting to want to group these declarations together by access level; i.e., group all the public members togeth
then all the default access member, then all the protected members, etc. However, static/non-static is a more impor
conceptual distinction than access level. Also, there are so many different access levels in Java that it becomes too c
fusing, and does not work well in practice.

2. Theprivate protected access level is obsolete and should not be used.

Data

Code
Java Coding Style Guide 11 Classes

-
lso a

ctors
f

, if any,

tion 6.2

after
ed
ctors.

 and
to
[FieldModifiers] Type FieldName [= Initializer];

FieldModifiers are any legal combination of the following keywords, in this order:

public protected private static final transient volatile

Always put field declarations on separate line; do not group them together on a single line:

static private int useCount, index; // WRONG

static private int useCount; // RIGHT
static private long index; // RIGHT

A field which is never changed after initialization should be declaredfinal . This not only serves as use
ful documentation to the reader, but also allows the compiler to generate more efficient code. It is a
good idea to align the field names so that they all start in the same column.

6.1.4 Static initializer

A static initializer, if any, comes next. It is called when the class is first referenced, before any constru
are called. It is useful for initializing blank static final fields (static final fields not initialized at point o
declaration). There should at most one static initializer per class. It has the following form:

static {
statements ;

}

6.1.5 Static member inner class declarations

Static inner (nested) classes which pertain to a class as a whole rather than any particular instance
come next:

public class Outer {
 static class Inner { // static inner class
 }
}

6.1.6 Static method declarations

Any static methods come next. A static method follows the same rules as instance methods. See sec
below for the format of method declarations. Note thatmain() is a static method.

6.1.7 Instance initializer

An instance (non-static) initializer, if any, comes next. If present, it is called from every constructor
any calls to super-class constructors. It is useful for initializing blank final fields (final fields not initializ
at point of declaration), and for initializing anonymous inner classes since they cannot declare constru
There should be at most one instance initializer per class:

// Instance initializer
{

statements ;
}

6.1.8 Constructor declarations

Constructor declarations, if any, come next. All of the elements of the constructor declaration up to
including the opening brace “{ ” should appear on a single line (unless it is necessary to break it up in
continuation lines if it exceeds the allowable line length). Example:
Java Coding Style Guide 12 Classes

ving
ith no

e

xcep-

rovide
o

s a

blank
 /**
 * Constructs a new empty FooBar.
 */
 public FooBar() {
 value = new char[0];
 }

If there is more than one constructor, sort them lexically by formal parameter list, with constructors ha
more parameters always coming after those with fewer parameters. This implies that a constructor w
arguments (if it exists) is always the first one.

6.1.9 Instance method declarations

Instance method declarations, if any, come next. Instance methods are those which donothave the keyword
static in their declarations. See section 6.2 below for the format of method declarations.

6.2 Method declarations

All of the elements of a method declaration up to and including the opening brace “{ ” should appear on a
single line (unless it is necessary to break it up into continuation lines if it exceeds the allowable lin
length). A method declaration looks like the following. Elements in square brackets “{ ” are optional.

[MethodModifiers] Type MethodName (Parameters) [throws Exceptions] {

MethodModifiers are any combination of the following phrases, in this order:

public protected private abstract static final synchronized native

Exceptionsis the name of an exception, or a comma-separated list of exceptions. If more than one e
tion is given, then they should be sorted in lexical order.

Parameters is the list of formal parameter declarations. Parameters may be declaredfinal in order to
make the compiler enforce that the parameter is not changed in the body of the method, as well as to p
useful documentation to the reader. Parametersmust be declared final in order to make them available t
local inner classes.

A method that will never be overridden by a sub-class should be declaredfinal . This allows the compiler
to generate more efficient code. Methods that areprivate , or declared in a class that isfinal , are im-
plicitly final ; however, in these cases the method should still be explicitly declaredfinal for clarity.

Methods are sorted in lexical order, with one exception: if there is afinalize() method, it should be
the very last method declaration in the class. This makes it easy to quickly see whether a class hafi-
nalize() method or not. If possible, afinalize() method should callsuper.finalize() as
the last action it performs. If the method declaration has one or more continuation lines, then a single
line should immediately follow the opening brace.

Examples:
Java Coding Style Guide 13 Classes

any oth-

the only

cific to

g
n the

ing of

uired
colon,
aining
// Long method declaration that requires a continuation line.
// Note the opening brace is immediately followed by a blank line.
public static final synchronized long methodName()
 throws ArithmeticException, InterruptedException {

 static int count;
}

// Line broken in the middle of a parameter list
// Align just after left parenthesis
public boolean imageUpdate(Image img, int infoflags,
 int x, int y, int w, int h) {
 int i;
}

6.3 Local inner classes

Inner (nested) classes may be declared local to a method. This makes the inner class unavailable to
er method in the enclosing class. They follow the same format rules as top-level classes:

Enumeration enumerate() {
 class Enum implements Enumeration {
 }

 return new Enum();
}

6.4 Anonymous inner classes

Anonymous classes can be used when then following conditions are met:

1. The class is referred to directly in only one place.

2. The class definition is simple, and contains only a few lines.

In all other cases, use named classes (inner or not) instead.

AWT Listeners are a common case where anonymous classes are appropriate. In many such cases,
purpose of the class is simply to call another method to do most of the work of handling an event.

Anonymous inner classes follow similar rules as named classes; however there are a few rules spe
anonymous classes:

• When possible, the wholenew expression, consisting of thenew operator, the type name, and openin
brace, should appear on the same line as the expression of which it is a part. If it does not fit o
line, then the wholenew expression should moved to the next line as a unit.

• The body of the anonymous class should be indented by the normal indentation from the beginn
the line that contains thenew expression.

• The closing brace should not be on a line by itself, but should be followed whatever tokens are req
by the rest of the expression. Usually, this means the closing brace is followed by at least a semi-
closing parenthesis, or comma. The closing brace is indented to the same level as the line cont
thenew expression. There is no space immediately following the closing brace.

Examples:
Java Coding Style Guide 14 Classes

 expres-
initial-
s also

ts in

ne in-
// Anonymous class inside a return expression
Enumeration myEnumerate(final Object array[]) {
 return new Enumeration() { // new on same line
 int count = 0;
 public boolean hasMoreElements() {
 return count < array.length;
 }
 public Object nextElement() {
 return array[count++];
 }
 }; // } followed by ;
}

// Anonymous class inside a parenthesized expression
helpButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showHelp();
 }
}); // } followed by);

6.5 Anonymous array expressions and array initializers

Anonymous arrays can be used wherever an array value is needed. If the entire anonymous array
sion fits on one line, then it is acceptable to place it on a single line. Otherwise, there should be one
izer per line, with the same rules as for anonymous inner classes (see section 6.4). The same rule
apply to array initializers in array declarations.

// Example where entire array expression fits on one line
Polygon p = new Polygon(new int[] {0, 1, 2},
 new int[] {10, 11, 12},
 3);

// Example with one array initializer per line
String errorMessages[] = {
 "No such file or directory",
 "Unable to open file",
 "Unmatched parentheses in expression"
};

// Example of embedded anonymous array expression
createMenuItems(new menuItemLabels[] {
 "Open",
 "Save",
 "Save As...",
 "Quit",
});

7.0 Interfaces

Interfaces follows a similar style to classes. An interface declaration looks like the following. Elemen
square brackets “[] ” are optional.

[public] interface InterfaceName [extends SuperInterfaces] {
InterfaceBody

}

SuperInterfaces is the name of an interface, or a comma-separated list of interfaces. If more than o
terface is given, then they should be sorted in lexical order.
Java Coding Style Guide 15 Interfaces

ration
up

tion 6.0).

thods.

ble for

 ex-
diately
An interface declaration always starts in column 1. All of the above elements of the interface decla
up to and include the opening brace “{ ” should appear on a single line (unless it is necessary to break it
into continuation lines if it exceeds the allowable line length). TheInterfaceBody is indented by the stan-
dard indentation of four spaces. The closing brace “} ” appears on its own line in column 1.There should
not be a semi-colon following the closing brace.

All interfaces are inherentlyabstract ; do not explicitly include this keyword in the declaration of an
interface.

All interface fields are inherentlypublic , static , andfinal ; do not explicitly include these keywords
in the declaration of an interface field.

All interface methods are inherentlypublic andabstract ; do not explicitly include these keywords in
the declaration of an interface method.

Except as otherwise noted, interface declarations follow the same style guidelines as classes (sec

7.1 Interface body organization

The body of an interface declaration should be organized in the following order:

1. Interface constant field declarations.

2. Interface method declarations

The declaration styles of interface fields and methods are identical to the styles for class fields and me

8.0 Statements

8.1 Simple statements

8.1.1 Assignment and expression statements

Each line should contain at most one statement. For example,

a = b + c; count++; // WRONG

a = b + c; // RIGHT
count++; // RIGHT

8.1.2 Local variable declarations

Generally local variable declarations should be on separate lines; however, an exception is allowa
temporary variables that do not require initializers. For example,

int i, j = 4, k; // WRONG

int i, k; // acceptable
int j = 4; // RIGHT

Local variables may be declaredfinal in order to make the compiler enforce that the variable is not
changed after initialization, as well as to provide useful documentation to the reader. Local variablesmust
be declared final in order to make them available to local inner classes.

8.1.3 Array declarations

The brackets “[] ” in array declarations should immediately follow the array name, not the type. The
ception is for method return values, where there is no separate name; in this case the brackets imme
follow the type:

char[] buf; // WRONG
char buf[]; // RIGHT
String[] getNames() { // RIGHT, method return value
Java Coding Style Guide 16 Statements

races

com-

atement.
There should never be a space before the opening bracket “[”.

8.1.4 return statement

Do not use parentheses around the value to be returned unless it is a complex expression:

return(true); // WRONG

return true; // RIGHT
return (s.length() + s.offset); // RIGHT

8.2 Compound statements

8.2.1 Braces style

Compound statements are statements that contain a statement block enclosed in “{} ” braces. All com-
pound statements follow the same braces style; namely, the style commonly known as the “K & R” b
style. This includes interface, class and method declarations. This style is specified as follows:

1. The opening left brace is at the end of the line beginning the compound statement.

2. The closing right brace is alone on a line, indented to the same column as the beginning of the
pound statement.

3. The statements inside the enclosed braces are indented one more level than the compound st

8.2.2 Allowed exception to braces rule

In cases where the language allows it, the bracesmay be omitted when both of the following are true:

1. The statement block consists of the null statement “; ”, or a singlesimple(not compound) statement.

2. There are no continuation lines.

However, it is preferred to use braces in all cases.

The rules on how to format particular compound statements are described below.
Java Coding Style Guide 17 Statements

8.2.3 if statement

if (condition) {
statements ;

}

if (condition) {
statements ;

} else {
statements ;

}

if (condition) {
statements ;

} else if (condition) {
statements ;

} else {
statements ;

}

8.2.4 for statement

for (initialization ; condition ; update) {
statements ;

}

8.2.5 while statement

while (condition) {
statements ;

}

For “infinite” loops, use the following rather than “for (;;) { ... } ” :

while (true) {
statements ;

}

8.2.6 do-while statement

do {
statements ;

} while (condition);

8.2.7 switch statement

switch (condition) {
case 1:
case 2:

statements ;
 break;

case 3:
statements ;

 break;

default:
statements ;

 break;
}

Java Coding Style Guide 18 Statements

should
8.2.8 try statement

try {
statements ;

} catch (exception-declaration) {
statements ;

}

try {
statements ;

} finally {
statements ;

}

try {
statements ;

} catch (exception-declaration) {
statements ;

} finally {
 statements;
}

8.2.9 synchronized statement

synchronized (expression) {
 statements;
}

8.3 Labeled statements

Labeled statements should always be enclosed in braces “{} ”. The label itself should be indented to the
normal indentation level, followed by a colon, single space, and opening brace. The closing brace
have a trailing comment on the same line with the label repeated:

statement-label : {
} // statement-label
Java Coding Style Guide 19 Statements

rnal

1996

”

s

References

[1] Reddy, A., “C++ Style Guide”, Sun Internal Paper

[2] Plocher, J., Byrne, S., Vinoski, S., “C++ Programming Style With Rationale”, Sun Inte

[3] Gosling, J., Joy, B., Steele, G., “The Java Language Specification”, Addison-Wesley,

[4] Skinner, G., Shah, S., Shannon, B., “C Style and Coding Standards”, Sun Internal Paper,
Token 2151, Sun Electronic Library, 1990.

[5] “Java Beans 1.0 Specification”, JavaSoft, October 1996

[6] Pike, R., “Notes on Programming in C”, Bell Labs technical paper.

[7] Cannon, L., Spencer, H., Keppel, D.,et al, “Recommend C Style and Coding Standards,
updated version of “Indian Hill C Style and Coding Standards”, AT&T internal technical
paper.

[8] Goldsmith, D., Palevich, J., “Unofficial C++ Style Guide”, develop, April 1990.

[9] “Inner Classes Specification”, JavaSoft, 1997

[10] ISO Standard 3166, 1981

[11] Baecker, R., Marcus, A., Human Factors and Typography for More Readable Program,
ACM Press, 1990, especiallyAppendix C: An Essay on Comments.

[12] Kernighan, B., Ritchie, D.,The C Programming Language, Prentice-Hall, 1978

[13] McConnell, Steven,Code Complete, Microsoft Press, 1993,Chapter 19: Self-Documenting
Code

[14] Flanagan, David,JAVA in a Nutshell, O’Reilly & Associates, 1997,Chapter 5 - Inner
Classes and Other New Language Features
Java Coding Style Guide 20 References

Appendix A - Java Coding Style Example
/*
 * @(#)CodingStyleExample.java 1.0 98/01/23 Achut Reddy
 *
 * Copyright (c) 1994-1998 Sun Microsystems, Inc. All Rights Reserved.
 */

package com.sun.examples;

import java.applet.Applet;
import java.awt.Point;

/**
 * A class to demonstrate good coding style.
 */
public class CodingStyleExample extends Applet implements Runnable {

 static final int BUFFER_SIZE = 4096; // default buffer size
 StringBuffer name; // my name
 Point starshipCoordinates[]; // ship locations

 /**
 * Compute the total distance between a set of Points.
 * @param starshipCoordinates the locations of all known starships
 * @param numberOfPoints the number of points in the array
 * @return the total distance
 */
 public int computeDistances(Point starshipCoordinates[],
 int numberOfPoints) throws Exception {
 int distance = 0; // accumulates distances

 // Compute distance to each starship and add it to the total
 for (int i = 0; i < numberOfPoints; i++) {
 distance += Math.sqrt((double)((starshipCoordinates[i].x *
 starshipCoordinates[i].x) +
 (starshipCoordinates[i].y *
 starshipCoordinates[i].y)));
 }

 if (distance > 100000) {
 throw new Exception();
 }

 return distance;
 }

 /**
 * Called whenever Thread.start() is called for this class
 */
 public void run() {
 try {
 name.append("X");
 System.out.println(name);
 } catch (Exception e) {
 name = new StringBuffer(BUFFER_SIZE);
 }
 }
}

rs
Appendix B - Java Coding Style Quick Reference Sheet

Line length 80 characters

Indentation Four spaces, for all indentation levels.

Braces style “K&R” braces style: class declarations, method declarations, block statements, array initialize

Blank lines Before: a block or single-line comment, unless it is the first line in a block
Between: class or method declarations; last variable declaration and first method declaration.
After: copyright/ID comment, package declaration, import section

Blank spaces Before: binary operators except . (dot)
Between: a keyword and “(” or “{”; two adjacent keywords;
After: binary operators except . (dot); any keyword that takes an argument

File layout copyright/ID comment,
package declaration
import statements
public class definition
other class definitions

Class layout Static variables, Instance variables,
Static initializer, Static inner class members, Static methods,
Instance initializer, Instance constructors, Instance inner classes, Instance methods

Order of class modifiers public abstract final

Order of inheritances extends implements

Order of method modifiers public protected private abstract static final synchronized native

Naming Conventions

GOOD Examples BAD Examples

source files *.java MessageFormat.java MessageFormat.jv

JAR files *.jar, *.zip, all lower-case classes.zip, icons.jar Icons.JAR

packages lower-case, digits, no “_” com.sun.sunsoft.util COM.Sun.SunSoft.Util

classes InfixCaps
nouns

LayoutManager layout_manager,
ManageLayout

interfaces InfixCaps
adjectives(“-able”), nouns

Searchable,
Transferable

Searching,
Data_Transfer

variable fields infixCaps, nouns
(booleans: adjectives)

recordDelimiter,
resizable

RecordDelimiter,
record_delimiter

static final fields ALL_CAPS MAX_BUFFER_SIZE, COMMA max_buffer_size

methods infixCaps, imperative verbs,
getProp(), setProp(), isProp()

showStatus(),
isResizable()

add_component()

statement labels lower_case name_loop Nameloop
Java Coding Style Guide 23 Statements

	Java‘ Coding Style Guide
	Achut Reddy
	Server Management Tools Group
	Sun Microsystems, Inc.

	Created: January 27, 1998
	Last modified: May 30, 2000
	ABSTRACT

	The importance and benefits of a consistent coding style are well known. This document describes ...
	Feedback in the form of corrections or suggestions for improvement are welcomed. Comments may be ...
	1.0 Introduction

	This document describes a set of standards and guidelines for developing programs in the Java lan...
	The importance and benefits of a consistent coding style are well known. A consistent style:
	• improves the readability, and therefore, maintainability of code
	• facilitates sharing of code among different programmers, especially teams of programmers workin...
	• allows easier development of automated tools to assist in program development, such as tools wh...
	• makes it easier to conduct code reviews, another software engineering process with well-known b...
	• saves development time, once the guidelines are learned, by allowing programmers to focus on th...
	However, these standards are not meant to be rigidly enforced without exception. This document do...
	These standards are general, not specific to any particular project; project teams may choose to ...
	This document has been updated to cover all features up to version 1.1 of the Java language.
	1.1 Background

	The guidelines presented here were not created in a vacuum. In the process of creating this docum...
	The author has also used his extensive experience with C and C++ coding style issues gained from ...
	1.2 Acknowledgments

	This document builds upon and borrows heavily from several sources listed in the References secti...
	The language terminology used here, as well as several suggested naming conventions, are taken di...
	2.0 Source Files

	On file-based host implementations of Java, the compilation unit is a Java source file. A Java so...
	For all but the most trivial projects, source files should be kept under a version management sys...
	2.1 Source file naming

	Java source file names are of the form:
	ClassOrInterfaceName.java
	Where ClassOrInterfaceName is exactly the name of the public class or interface defined in the so...
	JAR (Java Archive) file names are of the form:
	ArchiveName.jar
	or
	ArchiveName.zip
	2.2 Source file organization

	A Java source file should contain the following elements, in the following order:
	1. Copyright/ID block comment
	2. package declaration
	3. import declarations
	4. one or more class/interface declarations

	At least one blank line should separate all of these elements.
	2.2.1 Copyright/ID block comment

	Every source file should start with a block comment containing version information and a standard...
	@(#)module version date [firstname lastname]
	This can be generated automatically by using the SCCS ID string:
	%W% %E%
	module is the name of the file. version is the source file version used by the version management...
	The copyright notice should contain at least the following line:
	Copyright (c) yearlist CopyrightHolder. All Rights Reserved.
	where yearlist is a year, a year range, or a comma-separated list of years for which the copyrigh...
	/*
	* %W% %E%
	*
	* Copyright (c) %G% Sun Microsystems, Inc. All Rights Reserved.
	*/
	2.2.2 package declaration

	Every source file should contain a package declaration. Omitting the package declaration causes t...
	package java.lang;
	2.2.3 import declarations

	Import statements should start in column 1, and a single space should separate the keyword import...
	Wildcard type-import-on-demand declarations (e.g. import java.util.*;) should not be used; use fu...
	• The most important reason is that someone can later add a new unexpected class file to the same...
	• Explicit class imports clearly convey to a reader the exact classes that are being used (and wh...
	• Explicit class imports provide better compile performance. While type-import-on-demand declarat...
	The -verbose flag in the javac compiler can be used to discover which types are actually being im...
	2.2.4 class/interface declarations

	Following the import sections are one or more class declarations and/or interface declarations, c...
	Every public type declaration should be immediately preceded by a documentation comment describin...
	3.0 Naming Conventions

	The naming conventions specified here apply only to Java code written in the basic ASCII characte...
	3.1 Package naming

	Generally, package names should use only lower-case letters and digits, and no underscore. Examples:
	java.lang
	java.awt.image

	dinosaur.theropod.velociraptor
	The unique package prefix scheme suggested in [3] should be used for packages that will be public...
	com.acmedonuts.graphics
	3.2 Class/Interface naming

	All type names (classes and interfaces) should use the InfixCaps style. Start with an upper-case ...
	Examples:
	// GOOD type names:
	LayoutManager, AWTException, ArrayIndexOutOfBoundsException
	// BAD type names:
	ManageLayout // verb phrase
	awtException // first letter lower-case array_index_out_of_bounds_exception // underscores
	3.3 Field naming

	Names of non-constant fields (reference types, or non-final primitive types) should use the infix...
	boolean resizable;
	char recordDelimiter;

	Names of fields being used as constants should be all upper-case, with underscores separating wor...
	1. All static final primitive types (Remember that all interface fields are inherently static fin...
	2. All static final object reference types that are never followed by "." (dot).
	3. All static final arrays that are never followed by "[" (dot).

	Examples:
	MIN_VALUE, MAX_BUFFER_SIZE, OPTIONS_FILE_NAME
	One-character field names should be avoided except for temporary and looping variables. In these ...
	• b for a byte
	• c for a char
	• d for a double
	• e for an Exception object
	• f for a float
	• g for a Graphics object
	• i, j, k, m, n for integers
	• p, q, r, s for String, StringBuffer, or char[] objects
	An exception is where a strong convention for the one-character name exists, such as x and y for ...
	Avoid variable l (“el”) because it is hard to distinguish it from 1 (“one”) on some printers and ...
	3.4 Method naming

	Method names should use the infixCaps style. Start with a lower-case letter, and capitalize the f...
	// GOOD method names:
	showStatus(), drawCircle(), addLayoutComponent()
	// BAD method names:
	mouseButton() // noun phrase; doesn’t describe function
	DrawCircle() // starts with upper-case letter
	add_layout_component() // underscores
	// The function of this method is unclear. Does it start the
	// server running (better: startServer()), or test whether or not
	// it is running (better: isServerRunning())?

	serverRunning() // verb phrase, but not imperative
	A method to get or set some property of the class should be called getProperty() or setProperty()...
	getHeight(), setHeight()
	A method to test some boolean property of the class should be called isProperty(), where Property...
	isResizable(), isVisible()
	3.5 Local variable naming

	Local variable follow the same naming rules as field names (see section 3.3).
	3.6 Statement label naming

	Statement labels can be targets of break or continue statements. They should be all lower-case, w...
	for (int i = 0; i < n; i++) {
	search: {
	for (int j = 0; j < n/2; j++) {
	if (node[j].name == name)
	break search;
	}
	for (int j = n/2; j < n; j++) {
	if (node[j].name == name)
	break search;
	}
	} // search
	}
	4.0 White Space Usage
	4.1 Blank lines

	Blank lines can improve readability by grouping sections of the code that are logically related. ...
	1. After the copyright block comment, package declaration, and import section.
	2. Between class declarations.
	3. Between method declarations.
	4. Between the last field declaration and the first method declaration in a class (see section 6.1).
	5. Before a block or single-line comment, unless it is the first line in a block.
	4.2 Blank spaces
	4.2.1 A single blank space (not tab) should be used:
	1. Between a keyword and its opening parenthesis. This applies to the following keywords: catch, ...
	2. After any keyword that takes an argument. Example: return true;
	3. Between two adjacent keywords.
	4. Between a keyword or closing parenthesis, and an opening brace “{”.
	5. Before and after binary operators except .(dot). Note that instanceof is a binary operator:

	if (obj instanceof Button) { // RIGHT
	if (obj instanceof(Button)) { // WRONG
	6. After a comma in a list.
	7. After the semi-colons in a for statement, e.g.:

	for (expr1; expr2; expr3) {
	4.2.2 Blanks should not be used:
	1. Between a method name and its opening parenthesis.
	2. Before or after a .(dot) operator.
	3. Between a unary operator and its operand.
	4. Between a cast and the expression being casted.
	5. After an opening parenthesis or before a closing parenthesis.
	6. After an opening square bracket [or before a closing square bracket].

	Examples:
	a += c[i + j] + (int)d + foo(bar(i + j), e);
	a = (a + b) / (c * d);
	if (((x + y) > (z + w)) || (a != (b + 3))) {
	return foo.distance(x, y);

	}
	Do not use special characters like form-feeds or backspaces.
	4.3 Indentation

	Line indentation is always 4 spaces, for all indentation levels.
	The construction of the indentation may include tabs as well as spaces in order to reduce the fil...
	Note: If this rule was not followed, tabs could not be used because they would lack a well- defin...
	4.4 Continuation lines

	Lines should be limited to 80 columns (but not necessarily 80 bytes, for non-ASCII encodings). Li...
	If the statement must be broken in the middle of a parenthesized expression, such as for compound...
	Examples:
	// RIGHT
	foo(long_expression1, long_expression2, long_expression3,

	long_expression4);
	// RIGHT
	foo(long_expression1,
	long_expression2,
	long_expression3,

	long_expression4);
	// RIGHT - blank line follows continuation line because same indent
	if (long_logical_test_1 || long_logical_test_2 ||
	long_logical_test_3) {
	statements;
	}

	A continuation line should never start with a binary operator. Never break a line where normally ...
	// WRONG
	while (long_expression1 || long_expression2 || long_expression3)
	{
	}
	// RIGHT
	while (long_expression1 || long_expression2 ||
	long_expression3) {
	}
	5.0 Comments

	Java supports three kinds of comments: documentation, block, and single-line comments. These are ...
	• Comments should help a reader understand the purpose of the code. They should guide the reader ...
	• Avoid comments that are obvious from the code, as in this famously bad comment example:
	i = i + 1; // Add one to i
	• Remember that misleading comments are worse than no comments at all.
	• Avoid putting any information into comments that is likely to become out-of-date.
	• Avoid enclosing comments in boxes drawn with asterisks or other fancy typography.
	• Temporary comments that are expected to be changed or removed later should be marked with the s...
	// XXX: Change this to call sort() when the bugs in it are fixed

	list->mySort();
	For further extensive guidance in proper comment usage, see references [11] and [13].
	5.1 Documentation comments

	Java has support for special comments documenting types (classes and interfaces), fields (variabl...
	A documentation comment should immediately precede the declared entity, with no blank lines in be...
	The comment text can include embedded HTML tags for better formatting, with the exceptions of the...
	Following the comment text are the documentation tag lines. A documentation comment should includ...
	Class and interface comments can use the @version, @author, and @see tags, in that order. If ther...
	Constructor comments can use the @param, @exception, and @see tags, in that order. Required tags:...
	Method comments can use the @param, @return, @exception, and @see tags, in that order. Required t...
	Variable comments can use only the @see tag. Required tags: none.
	All of the above can also use the @deprecated tag to indicate the item might be removed in a futu...
	A documentation comment ends with the characters */. It is also acceptable to end the comment wit...
	This is an example of a documentation comment for a method.:
	/**
	* Checks a object for “coolness”. Performs a comprehensive
	* coolness analysis on the object. An object is cool if it
	* inherited coolness from its parent; however, an object can
	* also establish coolness in its own right.
	*
	* @param obj the object to check for coolness
	* @param name the name of the object
	* @return true if the object is cool; false otherwise.
	* @exception OutOfMemoryError If there is not enough memory to
	* determine coolness.
	* @exception SecurityException If the security manager cannot be
	* created
	* @see isUncool
	* @see isHip
	**/
	public boolean isCool(Object obj, String name)
	throws OutOfMemoryError, SecurityException {
	5.2 Block comments

	A regular block comment is a traditional “C-style” comment. It starts with the characters /* and ...
	A block comment is always used for the copyright/ID comment at the beginning of each source file ...
	5.3 Single-line comments

	A single-line comment consists of the characters // followed by comment text. There is always a s...
	// Traverse the linked list, searching for a match

	for (Node node = head; node.next != null; node = node.next) {
	Single-line comments can also be used as trailing comments. Trailing comments are similar to sing...
	if (!isVisible())
	return; // nothing to do
	length++; // reserve space for null terminator

	Avoid the assembly language style of commenting every line of executable code with a trailing com...
	6.0 Classes

	A class declaration looks like the following. Elements in square brackets [] are optional.
	[ClassModifiers] class ClassName [Inheritances] {
	ClassBody
	}

	ClassModifiers are any combination of the following keywords, in this order:
	public abstract final
	Inheritances are any combination of the following phrases, in this order:
	extends SuperClass
	implements Interfaces
	SuperClass is the name of a superclass. Interfaces is the name of an interface, or a comma-separa...
	A class declaration always starts in column 1. All of the above elements of the class declaration...
	Example:
	// Long class declaration that requires 2 continuation lines.
	// Notice the opening brace is immediately followed by a blank line.
	public abstract class VeryLongNameOfTheClassBeingDefined
	extends VeryLongNameOfTheSuperClassBeingExtended
	implements Interface1, Interface2, Interface3, Interface4 {
	static private String buf[256];

	}
	6.1 Class body organization

	The body of a class declaration should be organized in the following order:
	1. Static variable field declarations
	2. Instance variable field declarations
	3. Static initializer
	4. Static member inner class declarations
	5. Static method declarations
	6. Instance initializer
	7. Instance constructor declarations
	8. Instance member inner class declarations
	9. Instance method declarations

	These three elements, fields, constructors, and methods, are collectively referred to as “members”.
	Within each numbered group above, sort in lexical order.
	6.1.1 Member access levels

	Note that there are four access levels for class members in Java: public, protected, default, and...
	6.1.2 Member documentation comments

	All public members must be preceded by a documentation comment. Protected and default access memb...
	6.1.3 Class and instance variable field declarations

	Class variable field declarations, if any, come first. Class variables are those fields which hav...
	[FieldModifiers] Type FieldName [= Initializer];
	FieldModifiers are any legal combination of the following keywords, in this order:
	public protected private static final transient volatile
	Always put field declarations on separate line; do not group them together on a single line:
	static private int useCount, index; // WRONG
	static private int useCount; // RIGHT

	static private long index; // RIGHT
	A field which is never changed after initialization should be declared final. This not only serve...
	6.1.4 Static initializer

	A static initializer, if any, comes next. It is called when the class is first referenced, before...
	static {
	statements;
	}
	6.1.5 Static member inner class declarations

	Static inner (nested) classes which pertain to a class as a whole rather than any particular inst...
	public class Outer {
	static class Inner { // static inner class
	}
	}
	6.1.6 Static method declarations

	Any static methods come next. A static method follows the same rules as instance methods. See sec...
	6.1.7 Instance initializer

	An instance (non-static) initializer, if any, comes next. If present, it is called from every con...
	// Instance initializer
	{
	statements;
	}
	6.1.8 Constructor declarations

	Constructor declarations, if any, come next. All of the elements of the constructor declaration u...
	/**
	* Constructs a new empty FooBar.
	*/
	public FooBar() {
	value = new char[0];

	}
	If there is more than one constructor, sort them lexically by formal parameter list, with constru...
	6.1.9 Instance method declarations

	Instance method declarations, if any, come next. Instance methods are those which do not have the...
	6.2 Method declarations

	All of the elements of a method declaration up to and including the opening brace “{” should appe...
	[MethodModifiers] Type MethodName(Parameters) [throws Exceptions] {
	MethodModifiers are any combination of the following phrases, in this order:
	public protected private abstract static final synchronized native
	Exceptions is the name of an exception, or a comma-separated list of exceptions. If more than one...
	Parameters is the list of formal parameter declarations. Parameters may be declared final in orde...
	A method that will never be overridden by a sub-class should be declared final. This allows the c...
	Methods are sorted in lexical order, with one exception: if there is a finalize() method, it shou...
	Examples:
	// Long method declaration that requires a continuation line.
	// Note the opening brace is immediately followed by a blank line.
	public static final synchronized long methodName()
	throws ArithmeticException, InterruptedException {
	static int count;
	}
	// Line broken in the middle of a parameter list
	// Align just after left parenthesis
	public boolean imageUpdate(Image img, int infoflags,
	int x, int y, int w, int h) {
	int i;
	}
	6.3 Local inner classes

	Inner (nested) classes may be declared local to a method. This makes the inner class unavailable ...
	Enumeration enumerate() {
	class Enum implements Enumeration {
	}
	return new Enum();
	}
	6.4 Anonymous inner classes

	Anonymous classes can be used when then following conditions are met:
	1. The class is referred to directly in only one place.
	2. The class definition is simple, and contains only a few lines.

	In all other cases, use named classes (inner or not) instead.
	AWT Listeners are a common case where anonymous classes are appropriate. In many such cases, the ...
	Anonymous inner classes follow similar rules as named classes; however there are a few rules spec...
	• When possible, the whole new expression, consisting of the new operator, the type name, and ope...
	• The body of the anonymous class should be indented by the normal indentation from the beginning...
	• The closing brace should not be on a line by itself, but should be followed whatever tokens are...
	Examples:
	// Anonymous class inside a return expression
	Enumeration myEnumerate(final Object array[]) {
	return new Enumeration() { // new on same line
	int count = 0;
	public boolean hasMoreElements() {
	return count < array.length;
	}
	public Object nextElement() {
	return array[count++];
	}
	}; // } followed by ;
	}
	// Anonymous class inside a parenthesized expression
	helpButton.addActionListener(new ActionListener() {
	public void actionPerformed(ActionEvent e) {
	showHelp();
	}

	}); // } followed by);
	6.5 Anonymous array expressions and array initializers

	Anonymous arrays can be used wherever an array value is needed. If the entire anonymous array exp...
	// Example where entire array expression fits on one line
	Polygon p = new Polygon(new int[] {0, 1, 2},
	new int[] {10, 11, 12},
	3);
	// Example with one array initializer per line
	String errorMessages[] = {
	"No such file or directory",
	"Unable to open file",
	"Unmatched parentheses in expression"
	};
	// Example of embedded anonymous array expression
	createMenuItems(new menuItemLabels[] {
	"Open",
	"Save",
	"Save As...",
	"Quit",

	});
	7.0 Interfaces

	Interfaces follows a similar style to classes. An interface declaration looks like the following....
	[public] interface InterfaceName [extends SuperInterfaces] {
	InterfaceBody
	}

	SuperInterfaces is the name of an interface, or a comma-separated list of interfaces. If more tha...
	An interface declaration always starts in column 1. All of the above elements of the interface de...
	All interfaces are inherently abstract; do not explicitly include this keyword in the declaration...
	All interface fields are inherently public, static, and final; do not explicitly include these ke...
	All interface methods are inherently public and abstract; do not explicitly include these keyword...
	Except as otherwise noted, interface declarations follow the same style guidelines as classes (se...
	7.1 Interface body organization

	The body of an interface declaration should be organized in the following order:
	1. Interface constant field declarations.
	2. Interface method declarations

	The declaration styles of interface fields and methods are identical to the styles for class fiel...
	8.0 Statements
	8.1 Simple statements
	8.1.1 Assignment and expression statements

	Each line should contain at most one statement. For example,
	a = b + c; count++; // WRONG
	a = b + c; // RIGHT

	count++; // RIGHT
	8.1.2 Local variable declarations

	Generally local variable declarations should be on separate lines; however, an exception is allow...
	int i, j = 4, k; // WRONG
	int i, k; // acceptable

	int j = 4; // RIGHT
	Local variables may be declared final in order to make the compiler enforce that the variable is ...
	8.1.3 Array declarations

	The brackets “[]” in array declarations should immediately follow the array name, not the type. T...
	char[] buf; // WRONG
	char buf[]; // RIGHT

	String[] getNames() { // RIGHT, method return value
	There should never be a space before the opening bracket “[”.
	8.1.4 return statement

	Do not use parentheses around the value to be returned unless it is a complex expression:
	return(true); // WRONG
	return true; // RIGHT
	return (s.length() + s.offset); // RIGHT
	8.2 Compound statements
	8.2.1 Braces style

	Compound statements are statements that contain a statement block enclosed in “{}” braces. All co...
	1. The opening left brace is at the end of the line beginning the compound statement.
	2. The closing right brace is alone on a line, indented to the same column as the beginning of th...
	3. The statements inside the enclosed braces are indented one more level than the compound statem...
	8.2.2 Allowed exception to braces rule

	In cases where the language allows it, the braces may be omitted when both of the following are t...
	1. The statement block consists of the null statement “;”, or a single simple (not compound) stat...
	2. There are no continuation lines.

	However, it is preferred to use braces in all cases.
	The rules on how to format particular compound statements are described below.
	8.2.3 if statement
	if (condition) {
	statements;
	}
	if (condition) {
	statements;
	} else {
	statements;
	}
	if (condition) {
	statements;
	} else if (condition) {
	statements;
	} else {
	statements;
	}

	8.2.4 for statement
	for (initialization; condition; update) {
	statements;
	}

	8.2.5 while statement
	while (condition) {
	statements;

	}
	For “infinite” loops, use the following rather than “for (;;) { ... }” :
	while (true) {
	statements;

	}
	8.2.6 do-while statement
	do {
	statements;

	} while (condition);
	8.2.7 switch statement
	switch (condition) {
	case 1:
	case 2:
	statements;
	break;
	case 3:
	statements;
	break;
	default:
	statements;
	break;

	}
	8.2.8 try statement
	try {
	statements;
	} catch (exception-declaration) {
	statements;
	}
	try {
	statements;
	} finally {
	statements;
	}
	try {
	statements;
	} catch (exception-declaration) {
	statements;
	} finally {
	statements;
	}

	8.2.9 synchronized statement
	synchronized (expression) {
	statements;
	}

	8.3 Labeled statements

	Labeled statements should always be enclosed in braces “{}”. The label itself should be indented ...
	statement-label: {
	} // statement-label
	References
	[1] Reddy, A., “C++ Style Guide”, Sun Internal Paper
	[2] Plocher, J., Byrne, S., Vinoski, S., “C++ Programming Style With Rationale”, Sun Internal
	[3] Gosling, J., Joy, B., Steele, G., “The Java Language Specification”, Addison-Wesley, 1996
	[4] Skinner, G., Shah, S., Shannon, B., “C Style and Coding Standards”, Sun Internal Paper, Token...
	[5] “Java Beans 1.0 Specification”, JavaSoft, October 1996
	[6] Pike, R., “Notes on Programming in C”, Bell Labs technical paper.
	[7] Cannon, L., Spencer, H., Keppel, D., et al, “Recommend C Style and Coding Standards”, updated...
	[8] Goldsmith, D., Palevich, J., “Unofficial C++ Style Guide”, develop, April 1990.
	[9] “Inner Classes Specification”, JavaSoft, 1997
	[10] ISO Standard 3166, 1981
	[11] Baecker, R., Marcus, A., Human Factors and Typography for More Readable Programs, ACM Press,...
	[12] Kernighan, B., Ritchie, D., The C Programming Language, Prentice-Hall, 1978
	[13] McConnell, Steven, Code Complete, Microsoft Press, 1993, Chapter 19: Self-Documenting Code
	[14] Flanagan, David, JAVA in a Nutshell, O’Reilly & Associates, 1997, Chapter 5 - Inner Classes ...

	Appendix A - Java Coding Style Example
	/*
	* @(#)CodingStyleExample.java 1.0 98/01/23 Achut Reddy
	*
	* Copyright (c) 1994-1998 Sun Microsystems, Inc. All Rights Reserved.
	*/
	package com.sun.examples;
	import java.applet.Applet;
	import java.awt.Point;
	/**
	* A class to demonstrate good coding style.
	*/
	public class CodingStyleExample extends Applet implements Runnable {
	static final int BUFFER_SIZE = 4096; // default buffer size
	StringBuffer name; // my name
	Point starshipCoordinates[]; // ship locations
	/**
	* Compute the total distance between a set of Points.
	* @param starshipCoordinates the locations of all known starships
	* @param numberOfPoints the number of points in the array
	* @return the total distance
	*/
	public int computeDistances(Point starshipCoordinates[],
	int numberOfPoints) throws Exception {
	int distance = 0; // accumulates distances
	// Compute distance to each starship and add it to the total
	for (int i = 0; i < numberOfPoints; i++) {
	distance += Math.sqrt((double)((starshipCoordinates[i].x *
	starshipCoordinates[i].x) +
	(starshipCoordinates[i].y *
	starshipCoordinates[i].y)));
	}
	if (distance > 100000) {
	throw new Exception();
	}
	return distance;
	}
	/**
	* Called whenever Thread.start() is called for this class
	*/
	public void run() {
	try {
	name.append("X");
	System.out.println(name);
	} catch (Exception e) {
	name = new StringBuffer(BUFFER_SIZE);
	}
	}
	}

	Appendix B - Java Coding Style Quick Reference Sheet

