
1CS 721: Information Retrieval Systems 4. Index Construction

CS 721
“Information Retrieval Systems”

Chapter 4
Index Construction

This material is adapted from the book:

Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze,
Introduction to Information Retrieval, Cambridge University Press. 2008.

http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html

2CS 721: Information Retrieval Systems 4. Index Construction

4. Index construction

4.1 Hardware basics
4.2 Blocked sort-based indexing
4.3 Single-pass in-memory indexing
4.4 Distributed indexing
4.5 Dynamic indexing

3CS 721: Information Retrieval Systems 4. Index Construction

4.1 Hardware basics
• When building an IR system, many decisions are

based on the characteristics of the computer
hardware on which the system runs.

• Performance characteristics typical of systems in
2007 are shown in Table 4.1.

• A list of hardware basics that we need to
motivate IR system design follows.

4CS 721: Information Retrieval Systems 4. Index Construction

5CS 721: Information Retrieval Systems 4. Index Construction

• Access to data in memory is much faster than
access to data on disk.
– We want to keep as much data as possible in

memory especially those data that we need to access
frequently (caching).

• When doing a disk read or write, it takes a while
for the disk head to move to the part of the disk
where the data are located. This time is called
the seek time.
– No data are being transferred during the seek.
– To maximize data transfer rates, chunks of data that

will be read together should therefore be stored
contiguously on disk.

6CS 721: Information Retrieval Systems 4. Index Construction

• Operating systems generally read and
write entire blocks.
– Block sizes of 8, 16, 32, and 64 KB are

common.

• Data transfers from disk to memory are
handled by the system bus, not by the
processor. This means that the processor
is available to process data during disk
I/O.

7CS 721: Information Retrieval Systems 4. Index Construction

• We can speed up data transfers by storing
compressed data on disk.
– Assuming an efficient decompression

algorithm, the total time of reading and
then decompressing compressed data is
usually less than reading uncompressed
data.

• Servers used in IR systems typically have
several gigabytes (GB) of main memory.

8CS 721: Information Retrieval Systems 4. Index Construction

4.2 Blocked sort-based indexing

• The basic steps in constructing a non-positional
index are:
1. We first make a pass through the collection

assembling all term – docID pairs.

2. We then sort the pairs with the term as the
dominant key and docID as the secondary key.

3. Finally, we organize the docIDs for each term into a
postings list and compute statistics like term and
document frequency.

9CS 721: Information Retrieval Systems 4. Index Construction

• To make index construction more efficient,
we represent terms as termIDs instead of
strings termID, where each termID is a
unique serial number.

• We can build the mapping from terms to
termIDs on the fly while we are processing
the collection; or, in a two-pass approach,
– we compile the vocabulary in the first pass

and
– construct the inverted index in the second

pass.

10CS 721: Information Retrieval Systems 4. Index Construction

• We work with the Reuters-RCV1 collection
as a model collection,
– a collection with roughly 1 GB of text.
– It consists of about 800,000 documents.
– covers a wide range of international topics,

including politics, business, sports, and
science.

– has 100 million tokens.
• Collecting all <termID, docID> pairs of the

collection using 4 bytes each for termID and docID
therefore requires 0.8 GB of storage.

11CS 721: Information Retrieval Systems 4. Index Construction

12CS 721: Information Retrieval Systems 4. Index Construction

• The blocked sort-based indexing algorithm
(BSBI) is shown in Figure 4.2.

• BSBI
– segments the collection into parts of equal

size,
– sorts the <termID, docID> pairs of each part in

memory,
– stores intermediate sorted results on disk, and
– merges all intermediate results into the final

index.

13CS 721: Information Retrieval Systems 4. Index Construction

Figure 4.2 Blocked sort-based indexing. The algorithm stores inverted
blocks in files f1, . . ., fn and the merged index in f merged.

14CS 721: Information Retrieval Systems 4. Index Construction

• The algorithm parses documents into
<termID, docID> pairs and accumulates the
pairs in memory until a block of a fixed size is
full.

• The block is then inverted and written to disk.

• Inversion involves two steps.
– First, we sort the <termID, docID> pairs.
– Next, we collect all <termID, docID> pairs with the

same termID into a postings list, where a posting is
simply a docID.

• The result, an inverted index for the block we have just read,
is then written to disk.

15CS 721: Information Retrieval Systems 4. Index Construction

• Applying the algorithm to Reuters-RCV1 and
assuming we can fit 10 million <termID, docID>
pairs into memory, we end up with ten blocks,
each an inverted index of one part of the
collection.

• the algorithm simultaneously merges the ten
blocks into one large merged index.

• An example with two blocks is shown in Figure
4.3, where we use di to denote the ith document
of the collection.

16CS 721: Information Retrieval Systems 4. Index Construction

• To do the merging, we open all block files
simultaneously, and maintain small read buffers
for the ten blocks we are reading and a write
buffer for the final merged index we are writing.

• In each iteration, we select the lowest termID
that has not been processed yet using a priority
queue or a similar data structure.

• All postings lists for this termID are read and
merged, and the merged list is written back to
disk. Each read buffer is refilled from its file
when necessary.

17CS 721: Information Retrieval Systems 4. Index Construction

Figure 4.3 Merging in blocked sort-based indexing. Two blocks (“postings
lists to be merged”) are loaded from disk into memory, merged in memory and
written back to disk.

18CS 721: Information Retrieval Systems 4. Index Construction

4.3 Single-pass in-memory indexing
• BSBI has excellent scaling properties, but it

needs a data structure for mapping terms to
termIDs. For very large collections, this data
structure does not fit into memory.

• A more scalable alternative is single-pass in-
memory indexing (SPIMI),
– SPIMI uses terms instead of termIDs,
– writes each block's dictionary to disk, and then
– starts a new dictionary for the next block.
– SPIMI can index collections of any size as long as

there is enough disk space available.

19CS 721: Information Retrieval Systems 4. Index Construction

• The SPIMI algorithm is shown in Figure 4.4 .

• SPIMI-INVERT is called repeatedly on the token
stream until the entire collection has been
processed.

• Tokens are processed one by one (line 4) during
each successive call of SPIMI-INVERT. When a
term occurs for the first time, it is added to the
dictionary, and a new postings list is created
(line 6). The call in line 7 returns this postings list
for subsequent occurrences of the term.

20CS 721: Information Retrieval Systems 4. Index Construction

Figure 4.4 : Inversion of a block in single-pass in-memory indexing

21CS 721: Information Retrieval Systems 4. Index Construction

• A difference between BSBI and SPIMI is that
SPIMI adds a posting directly to its postings list
(line 10).

• Instead of first collecting all <termID, docID>
pairs are then sorting them (as we did in BSBI),
each postings list is dynamic (i.e., its size is
adjusted as it grows) and it is immediately
available to collect postings.

• This has two advantages:
– It is faster (no sorting required), and
– it saves memory (we keep track of the term a postings

list belongs to, so the termIDs of postings need not be
stored.)

22CS 721: Information Retrieval Systems 4. Index Construction

• We allocate space for a short postings list
initially and double the space each time it is full
(lines 8-9).

• When memory has been exhausted, we write
the index of the block to disk (line 12).

• We have to sort the terms (line 11) before doing
this because we want to write postings lists in
lexicographic order to facilitate the final merging
step.

23CS 721: Information Retrieval Systems 4. Index Construction

• Each call of SPIMI-INVERT writes a block to
disk, just as in BSBI. The last step of SPIMI is
then to merge the blocks into the final inverted
index.

• In addition to constructing a new dictionary
structure for each block and eliminating the
expensive sorting step, SPIMI has a third
important component: compression.

• Both the postings and the dictionary terms can
be stored compactly on disk if we employ
compression.

24CS 721: Information Retrieval Systems 4. Index Construction

4.4 Distributed indexing
• Collections are often so large that we cannot perform

index construction efficiently on a single machine. This is
particularly true of the www for which we need large
computer clusters to construct any reasonably sized
web index.

• Web search engines use distributed indexing algorithms
for index construction. The result of the construction
process is a distributed index that is partitioned across
several machines - either according to term or according
to document.

• Most large search engines prefer a document-partitioned
index (which can be easily generated from a term-
partitioned index).

25CS 721: Information Retrieval Systems 4. Index Construction

• The distributed index construction method is an
application of MapReduce , a general architecture for
distributed computing. MapReduce is designed for large
computer clusters.

• The point of a cluster is to solve large computing
problems on cheap commodity machines or nodes that
are built from standard parts (processor, memory, disk)
as opposed to on a supercomputer with specialized
hardware.

• One requirement for robust distributed indexing is that
we divide the work up into chunks that we can easily
assign and - in case of failure - reassign. A master node
directs the process of assigning and reassigning tasks to
individual worker nodes.

26CS 721: Information Retrieval Systems 4. Index Construction

• The map and reduce phases of
MapReduce split up the computing job into
chunks that standard machines can
process in a short time.

• The various steps of MapReduce are
shown in Figure 4.5 and an example on a
collection consisting of two documents is
shown in Figure 4.6 .

27CS 721: Information Retrieval Systems 4. Index Construction

Figure 4.5 : An example of distributed indexing with MapReduce.

28CS 721: Information Retrieval Systems 4. Index Construction

29CS 721: Information Retrieval Systems 4. Index Construction

• First, the input data is splits into n splits where
the size of the split is chosen to ensure that the
work can be distributed evenly (chunks should
not be too large) and efficiently (the total number
of chunks we need to manage should not be too
large); 16 or 64 MB are good sizes in distributed
indexing.

• Splits are not pre-assigned to machines, but are
instead assigned by the master node on an
ongoing basis:
– As a machine finishes processing one split, it is

assigned the next one. If a machine dies or becomes
a laggard due to hardware problems, the split it is
working on is simply reassigned to another machine.

30CS 721: Information Retrieval Systems 4. Index Construction

• MapReduce breaks a large computing problem
into smaller parts by recasting it in terms of
manipulation of key-value pairs.

• The map phase of MapReduce consists of
mapping splits of the input data to key-value
pairs. This is the same parsing task we also
encountered in BSBI and SPIMI, and we
therefore call the machines that execute the map
phase parsers .

• Each parser writes its output to local
intermediate files, the segment files (shown as
a-f, g-p, q-z in Figure 4.5).

31CS 721: Information Retrieval Systems 4. Index Construction

• For the reduce phase, we want all values for a given key
to be stored close together, so that they can be read and
processed quickly. This is achieved by partitioning the
keys into j term partitions and having the parsers write
key-value pairs for each term partition into a separate
segment file.

• In Figure 4.5 , the term partitions are according to first
letter: a-f, g-p, q-z, and j = 3 .

• The term partitions are defined by the person who
operates the indexing system . The parsers then write
corresponding segment files, one for each term partition.
Each term partition thus corresponds to r segments
files, where r is the number of parsers.

32CS 721: Information Retrieval Systems 4. Index Construction

• Collecting all values (here: docIDs) for a given key (here:
termID) into one list is the task of the inverters in the
reduce phase.

• The master assigns each term partition to a different
inverter - and, as in the case of parsers, reassigns term
partitions in case of failing or slow inverters.

• Each term partition (corresponding to r segment files,
one on each parser) is processed by one inverter.

• Finally, the list of values is sorted for each key and
written to the final sorted postings list (“postings” in the
figure).

33CS 721: Information Retrieval Systems 4. Index Construction

4.5 Dynamic indexing
• Most collections are modified frequently with documents

being added, deleted, and updated. This means that new
terms need to be added to the dictionary, and postings
lists need to be updated for existing terms.

• The simplest way to achieve this is to periodically
reconstruct the index from scratch.

• This is a good solution
– if the number of changes over time is small and
– a delay in making new documents searchable is acceptable and
– if enough resources are available to construct a new index while

the old one is still available for querying.

34CS 721: Information Retrieval Systems 4. Index Construction

• If there is a requirement that new documents be included
quickly, one solution is to maintain two indexes: a large
main index and a small auxiliary index that stores new documents.
The auxiliary index is kept in memory.

• Searches are run across both indexes and results
merged. Deletions are stored in an invalidation bit vector.

• We can then filter out deleted documents before
returning the search result. Documents are updated by
deleting and reinserting them.

• Each time the auxiliary index becomes too large, we
merge it into the main index.

