CS 721
“Information Retrieval Systems”

Chapter 4
Index Construction

This material is adapted from the book:

Christopher D. Manning, Prabhakar Raghavan and Hinrich Schiutze,
Introduction to Information Retrieval, Cambridge University Press. 2008.

http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html

CS 721: Information Retrieval Systems 4. Index Construction

4. Index construction

4.1 Hardware basics

4.2 Blocked sort-based indexing
4.3 Single-pass In-memory indexing
4.4 Distributed Indexing

4.5 Dynamic indexing

CS 721: Information Retrieval Systems 4. Index Construction

4.1 Hardware basics

 When building an IR system, many decisions are
based on the characteristics of the computer
hardware on which the system runs.

* Performance characteristics typical of systems in
2007 are shown in Table 4.1.

« A list of hardware basics that we need to
motivate IR system design follows.

CS 721: Information Retrieval Systems 4. Index Construction 3

Table 4.1 Typical system parameters in 2007. The seek time is the time needed to
position the disk head in a new position. The transtfer time per byte is the rate of
transfer from disk to memory when the head is in the right position.

Symbol Statistic Value
g average seek time Sms=>5x10" s
b transfer time per byte 0.02 us=2x 10"%s
processor’s clock rate 10" s~
4 lowlevel operation
(e.g., compare & swap a word) 0.01 us=10-%s
size of main memory several GB
size of disk space 1 TB or more

CS 721: Information Retrieval Systems 4. Index Construction

* Access to data in memory is much faster than
access to data on disk.
— We want to keep as much data as possible in

memory especially those data that we need to access
frequently (caching).

 When doing a disk read or write, it takes a while
for the disk head to move to the part of the disk
where the data are located. This time is called
the seek time.

— No data are being transferred during the seek.

— To maximize data transfer rates, chunks of data that
will be read together should therefore be stored
contiguously on disk.

CS 721: Information Retrieval Systems 4. Index Construction 5

* Operating systems generally read and
write entire blocks.

— Block sizes of 8, 16, 32, and 64 KB are
common.

e Data transfers from disk to memory are
nandled by the system bus, not by the
processor. This means that the processor
IS avallable to process data during disk
/0.

CS 721: Information Retrieval Systems 4. Index Construction

* \We can speed up data transfers by storing
compressed data on disk.

— Assuming an efficient decompression
algorithm, the total time of reading and
then decompressing compressed data Is
usually less than reading uncompressed
data.

o Servers used in IR systems typically have
several gigabytes (GB) of main memory.

CS 721: Information Retrieval Systems 4. Index Construction

4.2 Blocked sort-based indexing

 The basic steps in constructing a non-positional
Index are:

1. We first make a pass through the collection
assembling all term — doclID pairs.

2. We then sort the pairs with the term as the
dominant key and docID as the secondary key.

3. Finally, we organize the doclDs for each term into a
postings list and compute statistics like term and
document frequency.

CS 721: Information Retrieval Systems 4. Index Construction 8

 To make index construction more efficient,
we represent terms as termlDs instead of
strings termlID, where each termiD Is a
unique serial number.

* \We can build the mapping from terms to
termIDs on the fly while we are processing
the collection; or, in a two-pass approach,

—we compile the vocabulary in the first pass
and

— construct the inverted index in the second
pass.

CS 721: Information Retrieval Systems 4. Index Construction

 We work with the Reuters-RCV1 collection
as a model collection,
— a collection with roughly 1 GB of text.
— It consists of about 800,000 documents.

— covers a wide range of international topics,
Including politics, business, sports, and
science.

— has 100 million tokens.

» Collecting all <termID, doclID> pairs of the
collection using 4 bytes each for termID and docID
therefore requires 0.8 GB of storage.

CS 721: Information Retrieval Systems 4. Index Construction 10

Table 4.2 Collection statistics for Reuters-RCV1. Values are rounded for
the computations in this book. The unrounded values are: 806,791 docu-
ments, 222 tokens per document, 391,523 (distinct) terms, 6.04 bytes per
token with spaces and punctuation, 4.5 bytes per token without spaces and
punctuation, 7.5 bytes per term, and 96,969,056 tokens. The numbers in this
table correspond to the third line (“case folding”) in Table 5.1 (page 80).

Symbol Statistic Value
N documents 800,000
Lave avg. # tokens per document 200
M terms 400,000
avg. # bytes per token (incl. spaces /punct.) b
avg. # bytes per token (without spaces /punct.) 45
avg. # bytes per term 7.5
tokens 100,000,000

CS 721: Information Retrieval Systems 4. Index Construction 11

 The blocked sort-based indexing algorithm
(BSBI) is shown in Figure 4.2.

 BSBI

— segments the collection into parts of equal
size,

— sorts the <termlD, doclID> pairs of each part in
memory,

— stores Iintermediate sorted results on disk, and

— merges all intermediate results into the final
Index.

CS 721: Information Retrieval Systems 4. Index Construction 12

BSBINDEXCONSTRUCTION()
1 n<20

2 while (all documents have not been processed)
3 don—n+1

4 block «— ParseNExTBLOCK()

5 BSBI-InverT(bloCk)

WriTteBLockToDisk(block, f,)

6
7 MERGEBLOCKS(fy, ..., fui fmerged)

Figure 4.2 Blocked sort-based indexing. The algorithm stores inverted
blocks in files f1, . . ., fn and the merged index in f merged.

CS 721: Information Retrieval Systems 4. Index Construction

* The algorithm parses documents into
<termlD, docID> pairs and accumulates the
pairs in memory until a block of a fixed size is
full.

e The block is then inverted and written to disk.

 |nversion involves two steps.
— First, we sort the <termlD, docID> pairs.

— Next, we collect all <termID, docID> pairs with the
same termlID into a postings list, where a posting is
simply a doclID.

* The result, an inverted index for the block we have just read,
IS then written to disk.

CS 721: Information Retrieval Systems 4. Index Construction 14

* Applying the algorithm to Reuters-RCV1 and
assuming we can fit 10 million <termlID, doclID>
pairs into memory, we end up with ten blocks,
each an inverted index of one part of the
collection.

 the algorithm simultaneously merges the ten
blocks into one large merged index.

* An example with two blocks is shown in Figure

4.3, where we use d, to denote the ith document

of the collection.

CS 721: Information Retrieval Systems 4. Index Construction

15

* To do the merging, we open

all block files

simultaneously, and maintain small read buffers
for the ten blocks we are reading and a write
buffer for the final merged index we are writing.

 |n each iteration, we select the lowest termID

that has not been processed

yet using a priority

gueue or a similar data structure.

 All postings lists for this term
merged, and the merged list
disk. Each read buffer is refil
when necessary.

D are read and
IS written back to

ed from its file

CS 721: Information Retrieval Systems 4. Index Construction 16

postings lists
to be merged

brutus dl,d3dé6d7

brutus d1,d3 brubus dé6d7 caesar dl .d2.d4d8d9

caesar d1,d2d4 cacsar d8 d9 e julinve 410 IT'lE"I'gE‘d
noble d5 julius 410 killed dB8 pDStiﬂgS lists
wikh dl,d2,d3 d5 killed d8 noble d5

with dl1,d2 d3,d5

/

disk

Figure 4.3 Merging in blocked sort-based indexing. Two blocks (“postings
lists to be merged”) are loaded from disk into memory, merged in memory and
written back to disk.

CS 721: Information Retrieval Systems 4. Index Construction 17

4.3 Single-pass in-memory indexing

 BSBI has excellent scaling properties, but it
needs a data structure for mapping terms to
termIDs. For very large collections, this data
structure does not fit into memory.

A more scalable alternative Is single-pass In-
memory indexing (SPIMI),
— SPIMI uses terms instead of termlIDs,
— writes each block's dictionary to disk, and then
— starts a new dictionary for the next block.

— SPIMI can index collections of any size as long as
there is enough disk space available.

CS 721: Information Retrieval Systems 4. Index Construction

18

e The SPIMI algorithm is shown in Figure 4.4 .

 SPIMI-INVERT is called repeatedly on the token
stream until the entire collection has been
processed.

 Tokens are processed one by one (line 4) during
each successive call of SPIMI-INVERT. When a
term occurs for the first time, it is added to the
dictionary, and a new postings list is created
(line 6). The call in line 7 returns this postings list
for subsequent occurrences of the term.

CS 721: Information Retrieval Systems 4. Index Construction 19

SPIMI-INVERT (foken_stream)
cirtput_file = NEWFILE()
dietionary =» NEWHASH()
while (free memery available)
do teken — wext{token_stream)
if ferm(loken) & dictionary
then postings_fist = ADDTODICTIONARY {dfictionary, bersm(token))
else postings_list = GETPOSTINGSLAST{dictionary, berm | foken))
if full(postings_Fist)
then postings_list = DOUBLEPOSTINGSLIST{dictionary, ferm(foken))
ADDTOPOSTINGSLIST(postings_list, dociD{foken))
sorted_ferms «+— SORTTERMS(dictionary)
WRITEBLOCKTODNSK (sorted_terms, dictionary, outpul_file)
return oulpui_file

RRCEvmy o wmen e

Figure 4.4 :Inversion of a block in single-pass in-memory indexing

CS 721: Information Retrieval Systems 4. Index Construction 20

e A difference between BSBI and SPIMI iIs that

SPIMI adds a posting directly to its postings list
(line 10).

 Instead of first collecting all <termID, docID>
pairs are then sorting them (as we did in BSBI),
each postings list is dynamic (i.e., its size Is
adjusted as it grows) and it is Immediately
available to collect postings.

* This has two advantages:
— It is faster (no sorting required), and

— It saves memory (we keep track of the term a postings
list belongs to, so the termIDs of postings need not be
stored.)

CS 721: Information Retrieval Systems 4. Index Construction 21

 We allocate space for a short postings list
Initially and double the space each time it is full
(lines 8-9).

« When memory has been exhausted, we write
the index of the block to disk (line 12).

 We have to sort the terms (line 11) before doing
this because we want to write postings lists in
lexicographic order to facilitate the final merging
step.

CS 721: Information Retrieval Systems 4. Index Construction 22

e Each call of SPIMI-INVERT writes a block to
disk, just as in BSBI. The last step of SPIMI is
then to merge the blocks into the final inverted
iIndex.

 |n addition to constructing a new dictionary
structure for each block and eliminating the
expensive sorting step, SPIMI has a third
Important component: compression.

e Both the postings and the dictionary terms can
be stored compactly on disk if we employ
compression.

CS 721: Information Retrieval Systems 4. Index Construction 23

4.4 Distributed indexing

Collections are often so large that we cannot perform
iIndex construction efficiently on a single machine. This is
particularly true of the www for which we need large
computer clusters to construct any reasonably sized
web index.

Web search engines use distributed indexing algorithms
for index construction. The result of the construction
process is a distributed index that is partitioned across
several machines - either according to term or according
to document.

Most large search engines prefer a document-partitioned
index (which can be easily generated from a term-
partitioned index).

CS 721: Information Retrieval Systems 4. Index Construction 24

e The distributed index construction method is an
application of MapReduce , a general architecture for
distributed computing. MapReduce is designed for large
computer clusters.

 The point of a cluster Is to solve large computing
problems on cheap commodity machines or nodes that
are built from standard parts (processor, memory, disk)
as opposed to on a supercomputer with specialized
hardware.

* One requirement for robust distributed indexing is that
we divide the work up into chunks that we can easily
assign and - in case of failure - reassign. A master node
directs the process of assigning and reassigning tasks to
iIndividual worker nodes.

CS 721: Information Retrieval Systems 4. Index Construction 25

 The map and reduce phases of
MapReduce split up the computing job into
chunks that standard machines can
process in a short time.

 The various steps of MapReduce are
shown In Figure 4.5 and an example on a
collection consisting of two documents Is
shown in Figure 4.6 .

CS 721: Information Retrieval Systems 4. Index Construction 26

it Cmaster)
splits .ﬂﬂﬁi%ﬂr -..,__ aﬂ-ﬁisﬂ Pn;tinss

L -

a-f|g-p|q-=

a-f

map reduce
phase files phase

Figure 4.5 :An example of distributed indexing with MapReduce.

CS 721: Information Retrieval Systems 4. Index Construction

Schema of map and reduce funcHons
map: input — list{k, v}
reduce: {k list{v)) — output

Instantiation of the schema for index construction
map: web collection —+ list{termID, doclD)
reduce: ({termIDy, list{docIDY), {termIDy;, list{docIDY), ...) — (postings_list;, postings_list,, ...)

Example for index construction
map: d; : C died. d; : C came, C c'ed. — ({C, da), {died,.dy), {C,d,), {came,dy), {C.d.} {c'ed,d)
reduce: ({C,(dz,dyd, 1), {(died,(d:)), (came {d)), ced,(d1)y — ({C (d1:2,dz:1)), {died {dx:1)), {came,(d;:1)}, (c'ed,(d,:1)})

Figure 4.6 Map and reduce functions in MapReduce. In general, the map function produces a
list of key-value pairs. All values for a key are collected into one list in the reduce phase. This list
is then processed further. The instantiations of the two functions and an example are shown for
index construction. Because the map phase processes documents in a distributed fashion, termID-
doclD pairs need not be ordered correctly initially as in this example. The example shows terms
instead of termIDs for better readability. We abbreviate Caesar as C and conquered as c'ed.

CS 721: Information Retrieval Systems 4. Index Construction 28

« First, the input data is splits into n splits where
the size of the split Is chosen to ensure that the
work can be distributed evenly (chunks should
not be too large) and efficiently (the total number
of chunks we need to manage should not be too
large); 16 or 64 MB are good sizes In distributed
Indexing.

« Splits are not pre-assigned to machines, but are
Instead assigned by the master node on an
ongoing basis:

— As a machine finishes processing one split, it is
assigned the next one. If a machine dies or becomes

a laggard due to hardware problems, the split it is
working on is simply reassigned to another machine.

CS 721: Information Retrieval Systems 4. Index Construction 29

« MapReduce breaks a large computing problem
Into smaller parts by recasting it in terms of
manipulation of key-value pairs.

* The map phase of MapReduce consists of
mapping splits of the input data to key-value
pairs. This is the same parsing task we also
encountered in BSBI and SPIMI, and we
therefore call the machines that execute the map
phase parsers .

e Each parser writes its output to local
Intermediate files, the segment files (shown as
a-f, g-p, g-z in Figure 4.5).

CS 721: Information Retrieval Systems 4. Index Construction 30

« For the reduce phase, we want all values for a given key
to be stored close together, so that they can be read and
processed quickly. This is achieved by partitioning the
Keys into | term partitions and having the parsers write
key-value pairs for each term partition into a separate
segment file.

e In Figure 4.5, the term patrtitions are according to first
letter: a-f, g-p, g-z, and | = 3.

 The term partitions are defined by the person who
operates the indexing system . The parsers then write
corresponding segment files, one for each term partition.
Each term partition thus corresponds to r segments
files, where r is the number of parsers.

CS 721: Information Retrieval Systems 4. Index Construction 31

e Collecting all values (here: doclIDs) for a given key (here:
termlID) into one list is the task of the inverters in the
reduce phase.

« The master assigns each term partition to a different
Inverter - and, as in the case of parsers, reassigns term
partitions in case of failing or slow inverters.

« Each term partition (corresponding to r segment files,
one on each parser) is processed by one inverter.

« Finally, the list of values is sorted for each key and
written to the final sorted postings list (“postings” in the
figure).

CS 721: Information Retrieval Systems 4. Index Construction 32

4.5 Dynamic indexing

* Most collections are modified frequently with documents
being added, deleted, and updated. This means that new
terms need to be added to the dictionary, and postings
lists need to be updated for existing terms.

 The simplest way to achieve this is to periodically
reconstruct the index from scratch.

e This is a good solution
— if the number of changes over time is small and
— a delay in making new documents searchable is acceptable and

— 1f enough resources are available to construct a new index while
the old one is still available for querying.

CS 721: Information Retrieval Systems 4. Index Construction 33

« If there is a requirement that new documents be included

quickly, one solution is to maintain two indexes: a large
main index and a small auxiliary index that stores new documents.

The auxiliary index is kept in memory.

e Searches are run across both indexes and results
merged. Deletions are stored in an invalidation bit vector.

 We can then filter out deleted documents before
returning the search result. Documents are updated by
deleting and reinserting them.

« Each time the auxiliary index becomes too large, we
merge it into the main index.

CS 721: Information Retrieval Systems 4. Index Construction 34

